6,275 research outputs found

    Single-electron tunneling in InP nanowires

    Get PDF
    We report on the fabrication and electrical characterization of field-effect devices based on wire-shaped InP crystals grown from Au catalyst particles by a vapor-liquid-solid process. Our InP wires are n-type doped with diameters in the 40-55 nm range and lengths of several microns. After being deposited on an oxidized Si substrate, wires are contacted individually via e-beam fabricated Ti/Al electrodes. We obtain contact resistances as low as ~10 kOhm, with minor temperature dependence. The distance between the electrodes varies between 0.2 and 2 micron. The electron density in the wires is changed with a back gate. Low-temperature transport measurements show Coulomb-blockade behavior with single-electron charging energies of ~1 meV. We also demonstrate energy quantization resulting from the confinement in the wire.Comment: 4 pages, 3 figure

    Oxidation and erythropoiesis

    Get PDF
    Purpose of review Erythropoiesis is a complex multistep process going from committed erythroid progenitors to mature red cells. Although recent advances allow the characterization of some components of erythropoiesis, much still remains to be investigated particularly on stress erythropoiesis. This review summarizes recent progresses made to understand the impact of oxidative stress on normal and pathologic erythropoiesis. Recent findings During erythroid maturation, reactive oxygen species might function as second messenger through either transient oxidation of cysteine residues on signaling targets or modulation of intracellular signaling pathways. Thus, in erythropoiesis, efficient cytoprotective systems are required to limit possible reactive oxygen species-related toxic effects especially in stress erythropoiesis characterized by severe oxidation such as b-thalassemia. In addition, prolonged or severe oxidative stress impairs autophagy, which might contribute to the block of erythroid maturation in stress erythropoiesis. Understanding the functional role of cytoprotective systems such as peroxiredoxin-2 or classical molecular chaperones such as the heat shock proteins will contribute to develop innovative therapeutic strategies for ineffective erythropoiesis. Summary We provide an update on cytoprotective mechanisms against oxidation in normal and stress erythropoiesis. We discuss the role of oxidative sensors involved in modulation of intracellular signaling during erythroid maturation process in normal and stress erythropoiesis

    Networks from gene expression time series: characterization of correlation patterns

    Full text link
    This paper describes characteristic features of networks reconstructed from gene expression time series data. Several null models are considered in order to discriminate between informations embedded in the network that are related to real data, and features that are due to the method used for network reconstruction (time correlation).Comment: 10 pages, 3 BMP figures, 1 Table. To appear in Int. J. Bif. Chaos, July 2007, Volume 17, Issue

    Vombat: An Open Source Tool for Creating Stratigraphic Logs from Virtual Outcrops

    Get PDF
    An open source tool, Vombat , is presented that is designed to operate on Virtual Outcrop Models of sedimentary rocks, with the specific aim of assisting the stratigraphic analysis and interpretation. Vombat makes it possible to estimate the average attitude of the bedding and to create one or more attitude-aligned stratigraphic reference frames. This allows Vombat to extract continuous stratigraphic logs of any property associated with the point clouds (e.g. the lidar intensity or RGB color). Stratigraphic logs produced by Vombat can be compared and correlated to typical outcrop logs and petrophysical logs obtained from boreholes (e.g. gamma ray logs) and can provide information about the lithological variations in a stratigraphic succession. Furthermore, Vombat stratigraphic reference frames can be used to associate a stratigraphic position (a depth in the stratigraphic column) to any observation made on the outcrop, allowing visualization in 3D (on the virtual outcrop model) and 1D (on a stratigraphic column) for any collected data. All the geological objects created in the virtual environment can then be saved. The tool has been developed to be user-friendly and is constituted by a dynamically loaded plugin for the open source software CloudCompare

    Harmonization of design-based mapping for spatial populations

    Get PDF
    The mapping of a survey variable throughout a continuum or for finite populations of units is usually performed from a model-dependent perspective. Nevertheless, when a sample of locations/units is selected by a probabilistic sampling scheme, the complex task of modelling can be avoided by using the inverse distance weighting interpolator and deriving the properties of maps in a design-based perspective. Conditions ensuring consistency of maps can be derived mainly based on some obvious assumptions about the pattern of the survey variable throughout the study region as well from the feature of the sampling scheme adopted to select locations/units. Nevertheless, in a design-based setting the totals of the survey variable for a set of domains partitioning the study region are commonly estimated by traditional estimators such as the Horvitz–Thompson estimator in the case of finite populations or the Monte-Carlo estimator in the case of continuous populations or by related estimators exploiting the information of auxiliary variables. That necessarily gives rise to different total estimates with respect to those achieved from the resulting maps as the sum of the interpolated values within domains. To obtain non-discrepant results, a harmonization of maps is here suggested, in such a way that the resulting totals arising from maps coincide with those achieved by traditional estimation. The capacity of the harmonization procedure to maintain consistency is argued theoretically and checked by a simulation study performed on some real populations

    A Non-equilibrium STM model for Kondo Resonance on surface

    Full text link
    Based on a no-equilibrium STM model, we study Kondo resonance on a surface by self-consistent calculations. The shapes of tunneling spectra are dependent on the energy range of tunneling electrons. Our results show that both energy-cutoff and energy-window of tunneling electrons have significant influence on the shapes of tunneling spectra. If no energy-cutoff is used, the Kondo resonances in tunneling spectrum are peaks with the same shapes in the density of state of absorbed magnetic atoms. This is just the prediction of Tersoff theory. If we use an energy cutoff to remove high-energy lectrons, a dip structure will modulate the Kondo resonance peak in the tunneling spectrum. The real shape of Kondo peak is the mixing of the peak and dip, the so-called Fano line shape. The method of self-consistent non-equilibrium matrix Green function is discussed in details.Comment: 11 pages and 8 eps figur

    Harmonization of design-based mapping for spatial populations

    Get PDF
    The mapping of a survey variable throughout a continuum or for finite populations of units is usually performed from a model-dependent perspective. Nevertheless, when a sample of locations/units is selected by a probabilistic sampling scheme, the complex task of modelling can be avoided by using the inverse distance weighting interpolator and deriving the properties of maps in a design-based perspective. Conditions ensuring consistency of maps can be derived mainly based on some obvious assumptions about the pattern of the survey variable throughout the study region as well from the feature of the sampling scheme adopted to select locations/units. Nevertheless, in a design-based setting the totals of the survey variable for a set of domains partitioning the study region are commonly estimated by traditional estimators such as the Horvitz–Thompson estimator in the case of finite populations or the Monte-Carlo estimator in the case of continuous populations or by related estimators exploiting the information of auxiliary variables. That necessarily gives rise to different total estimates with respect to those achieved from the resulting maps as the sum of the interpolated values within domains. To obtain non-discrepant results, a harmonization of maps is here suggested, in such a way that the resulting totals arising from maps coincide with those achieved by traditional estimation. The capacity of the harmonization procedure to maintain consistency is argued theoretically and checked by a simulation study performed on some real population
    • …
    corecore